If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+x+1=0
a = -5; b = 1; c = +1;
Δ = b2-4ac
Δ = 12-4·(-5)·1
Δ = 21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{21}}{2*-5}=\frac{-1-\sqrt{21}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{21}}{2*-5}=\frac{-1+\sqrt{21}}{-10} $
| (2.71828182)^-3x=0.8 | | (9x+4)-8=-3 | | 9(x+8)=-9(x+8) | | 9(6x-7)=-333 | | C(n)=-3n-6C(n)=n-4 | | 43+3r=1 | | 1/3-4k=8k+29 | | 323÷x=17 | | -43(x+74)=x+-64 | | 3x+6=4x+3.2 | | -2=2+n/4 | | 18=3(2t | | 7x-12+5x-8=10x-2 | | 4=4.0(3d-5) | | 6+19+x=6 | | x+1/2(x)=27 | | 2(2)+2x=6x | | 3r-2/r=6/5 | | -4p^2-7p+2=0 | | -4x^2+7=0 | | x+3x=-3+5 | | -4(2x+3)-4=-3(x+1)+4 | | x+3x=3+5 | | 7/11x=49 | | 10=9x-6 | | x^+8x+15=0 | | -8x^2-5x+6=0 | | 16−2x=3x+1 | | (6x^2)-(24x)=0 | | X+x(.05)=46200 | | (v-4)^2=0 | | –4.4x–0.8=4.3 |